Syllabus Book

Second Year B Tech Chemical Engineering

P P Savani University

School of Engineering Department of Chemical Engineering

> Effective From: 2018-19 Authored by: P P Savani University

	P P SAVANI UNIVERSITY														
	SCHOOL OF ENGINEERING														
TEACHING & EXAMINATION SCHEME FOR SECOND YEAR B.TECH. CHEMICAL ENGINEERING PROGRAMME															
	C		Offered		Teach	ing Schem	е			E	xami	natio	n Sche	eme	1
Sem	Course Code	Course Title	By		Contact	Hours		Credit	Th	eory	Pra	ctical	Tut	orial	Total
				Theory	Practical	Tutorial	Total	cicuit	CE	ESE	CE	ESE	CE	ESE	Total
	SESH2031	Differential Methods for Chemical Engineers	SH	3	0	2	5	5	40	60	0	0	50	0	150
	SECH2010	Chemical Process Calculations	СН	3	0	1	4	4	40	60	0	0	50	0	150
	SECH2020	Solid Fluid Operations	СН	3	2	0	5	4	40	60	20	30	0	0	150
3	SECH2030	Unit Processes in Organic Synthesis	СН	3	2	0	5	4	40	60	20	30	0	0	150
	SECH2040	Chemical Engineering Materials and Metallurgy	СН	3	2	0	5	4	40	60	20	30	0	0	150
	SEPD2010	Critical Thinking, Creativity & Decision Making	SEPD	2	0	0	2	2	40	60	0	0	0	0	100
						Total	26	23							850
	SESH2022	Numerical & Statistical Analysis	SH	3	0	2	5	5	40	60	0	0	50	0	150
	SECH2050	Momentum Transfer	СН	3	2	0	5	4	40	60	20	30	0	0	150
	SECH2061	Physical, Inorganic & Analytical Chemistry	СН	3	2	0	5	4	40	60	20	30	0	0	150
	SECH2070	Chemical Eningeering Thermodynamics-I	СН	3	0	1	4	4	40	60	0	0	50	0	150
4	SECH2080	Mass Transfer Operations	СН	3	2	0	5	4	40	60	20	30	0	0	150
	SECH2091	Biochemical Engineering	СН	3	0	0	3	3	40	60	0	0	0	0	100
	SEPD2020	Values and Ethics	SEPD	2	0	0	2	2	40	60	0	0	0	0	100
	SEPD3030	Foreign Language (German)	SEPD		2		2	2	40	60	0	0	0	0	100
			1	1		Total	31	28		1	1				1050

CONTENT

Semester 3

Sr No	Course Code	Name of Course	Page No
1	SESH2031	Differential Methods for Chemical Engineers	01-03
2	SECH2010	Chemical Process Principles	04-06
3	SECH2020	Solid Fluid Operations	07-09
4	SECH2030	Unit Process in Organic Synthesis	10-13
5	SECH2040	Chemical Engineering Materials and Metallurgy	14-17
6	SEPD2010	Critical Thinking, Creativity & Decision Making	18-19

Semester 4

Sr No	Course Code	Name of Course	Page No
1	SESH2022	Numerical & Statistical Analysis	20-22
2	SECH2050	Momentum Transfer	23-26
3	SECH2061	Physical, Inorganic & Analytical Chemistry	27-30
4	SECH2070	Chemical Engineering Thermodynamics-I	31-32
5	SECH2080	Mass Transfer Operations	33-35
6	SECH2091	Biochemical Engineering	36-38
7	SEPD2020	Values and Ethics	39-40
8	SEPD3030	Foreign Language (German)	41-43

Department of Science & Humanities

Course Code: SESH2031

Course Name: Differential Methods for Chemical Engineers

Prerequisite Course: SESH1010-Elementary Mathematics for Engineers

Teaching & Examination Scheme:

Teaching Scheme (Hours/Week)				Examination Scheme (Marks)						
Theory	Practical	Tutorial	Credit	The	eory	Prac	ctical	Tute	orial	Total
Theory		TULOTIAI		CE	ESE	CE	ESE	CE	ESE	Total
3	-	2	5	40	60	-	-	50	-	150
					Theory Practical Tutorial Credit Theory	TheoryPracticalTutorialCreditTheoryCEESE	Theory Practical Tutorial Credit Theory Practical CE ESE CE	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learners to learn

- orientation of calculus and its applications in solving engineering problems including differential equations.
- introduction of Partial Differential Equations with methods of its solutions.
- applications of Integral Transforms for solving linear differential equations.
- introduction of Periodic functions and Fourier series with their applications for solving ODEs.

	Section I							
Module	Content	Hours	Weightage in %					
1.	Ordinary Differential Equation First order ODEs, Formation of differential equations, Solution of differential equation, Solution of equations in separable form, Exact first order ODEs, Linear first order ODEs, Bernoulli Equation, ODEs of Second and Higher order, Homogeneous linear ODEs, Linear Dependence and Independence of Solutions, Homogeneous linear ODEs with constant coefficients, Differential Operators Nonhomogeneous ODEs, Undetermined Coefficients, Variation of Parameters.	10	22					
2.	Partial Differential Equation Formation of First and Second order equations, Solution of First order equations, Linear and Non-liner equations of first, Higher order equations with constant coefficients, Complementary function, Particular Integrals.	7	15					
3.	Integral Transform-A Laplace Transform, Linearity, First Shifting Theorem, Existence Theorem, Transforms of Derivatives and Integrals, Unit Step Function, Second Shifting Theorem, Dirac's Delta function, Laplace Transformation of Periodic function, Inverse Laplace transform, Convolution	6	13					

	Section II								
Module	Content	Hours	Weightage in %						
1.	Integral Transform-B Introduction of Z transform, Linearity property, Damping rule, Basic theory of Z transform, Inverse Z-transform, Convolutions theorems, Application to Difference Equations	9	21						
2.	Fourier Series Periodic function, Euler Formula, Arbitrary Period, Even and Odd function, Half-Range Expansions, Applications to ODEs.	6	14						
3.	Fourier Integral and Transformation Representation by Fourier Integral, Fourier Cosine Integral, Fourier Sine Integral, Fourier Cosine Transform and Sine Transform, Linearity, Fourier Transform of Derivatives.	7	15						

List of Tutorials:

Sr No	Name of Tutorial	Hours
1.	Ordinary Differential Equation-1	2
2.	Ordinary Differential Equation-2	2
3.	Ordinary Differential Equation-3	4
4.	Partial Differential Equation-1	2
5.	Partial Differential Equation-2	4
6.	Laplace Transform	2
7.	z-Transform-1	2
8.	z-Transform-2	2
9.	z-Transform-3	4
10.	Fourier Series-1	2
11.	Fourier Series-2	2
12.	Fourier Integral and Transformation	2

Text Book(s):

Title	Author/s	Publication
Advanced Engineering Mathematics	Erwin Kreyszig	Wiley India Pvt. Ltd.

Reference Book(s):

Title	Author/s	Publication
Higher Engineering Mathematics	B. S. Grewal	Khanna Publishers
Advanced Engineering Mathematics	R. K. Jain, S.R.K. Iyengar	Narosa Publishing House Pvt. Ltd.
Differential Equations for Dummies	Steven Holzner	Wiley India Pvt. Ltd.
Higher Engineering Mathematics	H.K. Dass, Er. Rajnish	S. Chand & Company Pvt. Ltd.
	Verma	

Web Material Link(s):

1) http://nptel.ac.in/courses/111105035/

2) http://nptel.ac.in/courses/111106100/

3) http://nptel.ac.in/courses/111105093/

4) http://nptel.ac.in/courses/111108081/

Course Evaluation:

Theory:

- Continuous Evaluation consists of two tests of 30 marks and 1 hour of duration and average of the same will be converted to 30 marks.
- Faculty evaluation consists of 10 marks as per the guidelines provided by Course Coordinator.
- End Semester Examination consists of 60 marks.

Tutorial:

- Continuous Evaluation consists of performance of tutorial which should be evaluated out of 10 marks for each tutorial and average of the same will be converted to 30 marks.
- MCQ based examination consists of 10 marks.
- Internal viva consists of 10 marks.

Course Outcome(s):

- grasp the respective 1st and 2nd order ODE and PDE.
- analyze engineering problems (growth, decay, flow, spring and series/parallel electronic circuits) using 1st and 2nd order ODE.
- classify differential equations and solve linear and non-linear partial differential equations.
- understand concepts, formulas, and problem solving procedures to thoroughly investigate relevant real world problems.

Department of Chemical Engineering

Course Code: SECH2010 Course Name: Chemical Process Calculations Prerequisite Course: --

Teaching & Examination Scheme:

Teaching Scheme (Hours/Week)				Examination Scheme (Marks)							
Theory	Practical	ctical Tutorial	ctical Tutorial		The	eory	Prac	ctical	Tut	orial	Total
Theory			Credit	CE	ESE	CE	ESE	CE	ESE	TOtal	
3	0	1	4	40	60	00	00	50	0	150	

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learners to

- know the conventions and the methods of chemical process.
- develop the basic acumen for the Chemical Engineering and its calculations.
- know how to carry out various process calculations.
- improve their analytical skills for various chemical processes.
- improve their technical ability in the form of numerical analysis of chemical problems.

	Section I								
Module	Content	Hours	Weightage in %						
1.	Introduction: Chemical Engineering and Chemical Industry, Steady state and unsteady state processes, Unit Operations, Unit Processes and Process Flow Diagrams, Combustion and chemical processes.	02	03						
2.	Graphics and Basics of Chemical Processes: Graphical methods of curve fittings, Method of least squares, Solution of cubic equations by trial and error method, Conversion of units, Dimensional analysis, Properties of gas, liquid and solid, Equations of state, Mathematical techniques in chemical engineering.	03	07						
3.	Basic Calculations: State properties: Molecular weight, Compositions, Density, Vapor pressure etc for gas, liquid and solid systems, Thermal properties: Heat capacity, Sensible heat, Latent heat, Heat of reaction, Heat of solution, Enthalpy calculations etc. for gas, liquid and solid systems, Techniques of problem Solution: Analytical, Graphical and Numerical, Gas laws and phase equilibria, Humidity, Saturation and Crystallization.	09	20						
4.	Material Balances: Materials balance: Concepts of limiting and excess reactants, Batch, Stage-wise, Continuous and recycle operations, Material balance of systems involving mixing, extraction, distillation,	09	20						

	crystallization, chemical reaction and recycle processes, Material		
	balance equations based on conservation principle, Material		
	balances for non-reactive processes (Unit Operations), Material		
	balances for reactive processes.		
	Section II		
Module	Content	Hours	Weightage in %
	Vapour pressure:		
1.	Vapour pressure plots, Vapour pressure of immiscible liquids and vapour pressure of solutions; Humidity and saturation humidity chart, Super saturation, Distribution of a solute between immiscible and partially miscible liquids, Solubility of gases.	02	03
	Thermo physics and Energy Balances:		
2.	Energy balances for closed and open systems based on energy conservation principle, Energy balances for non-reactive processes (Unit Operations), Energy balances for reactive processes, Coupled material and energy balances for single unit process, Heats of formation, Combustion, reaction, solution, dilution, Effect of temperature on heat of reaction, Energy balance of systems without and with chemical reactions, Heat capacity calculations, Enthalpy changes of reactions, dissolution and laws of thermochemistry, Effect of pressure and temperature on heat of reactions.	10	22
3.	Multiple Unit Processes: Introduction to processes with multiple Units; Material balances on processes with recycle, Purge, and bypass, Introduction to DOF analysis and solution strategy for multi-unit process, Degrees of freedom in steady-state processes, Simultaneous material and energy balance problems using flow sheeting codes, Unsteady state material and energy balances. Material and energy balance calculations of some selected process plants such as sulfuric acid, ammonia, urea, caustic soda etc.	07	18

Title	Author/s	Publication
Stoichiometry	Bhatt, B.I. and Vora, S.M.	Tata McGraw-Hill Publishing Co., New Delhi.
Chemical Process Principles	Hougen, O.A., Watson.	John Wiley & Sons, (CBS Publishers &
Part-I	K.M. and Ragatz, R.A.	Distributor, New Delhi).

Reference Book(s):

Title	Author/s	Publication
Basic Principles and Calculation in Chemical Engineering	Himmelblau, D.M.	Prentice Hall, Inc.
Introduction to Chemical	S K Ghoshal, S K Sanyal	Tata McGraw-Hill Publishing Co. Ltd., New
Engineering	and S Dutta	Delhi.
Conservation of Mass and	Whitwell J.C. &Jone R.K.	McCrow Hill Singapore 1072
Energy	wintwen j.c. &jone K.K.	McGraw-Hill, Singapore, 1973.

Web Material Link(s):

http://nptel.ac.in/courses/103103039/23

Course Evaluation:

Theory:

- Continuous Evaluation consists of two tests of 30 marks and 1 hour of duration and average of the same will be converted to 30 marks.
- Faculty evaluation consists of 10 marks as per the guidelines provided by Course Coordinator.
- End Semester Examination consists of 60 marks.

Tutorial:

- Continuous Evaluation consists of performance of tutorial which should be evaluated out of 10 marks for each tutorial and average of the same will be converted to 10 Marks.
- Internal viva consists of 10 Marks.

Course Outcome(s):

- know and understand the basics of Chemical Engineering calculations.
- interpret the data for Chemical Engineering process scenarios.
- apply the knowledge of the principles of Chemical Engineering reactions.
- enhance their technical skills in the form of numerical analysis.

Department of Chemical Engineering

Course Code: SECH2020 Course Name: Solid Fluid Operations Prerequisite Course: --

Teaching & Examination Scheme:

Teaching Scheme (Hours/Week)				Ех	aminati	on Scher	ne (Mar	ks)		
Theory	Practical	Tutorial	Tutorial Cradit		eory	Prac	ctical	Tut	orial	Total
Theory	Plactical	Tutoriai	Credit	CE	ESE	CE	ESE	CE	ESE	TOLAI
3	2	0	4	40	60	20	30	00	00	150

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learners to

- understand many basic principles of Chemical Engineering operations such as Size Reduction, Filtration, Sedimentation, Mixing and Agitation etc. and their mathematical co-relation.
- understand basic principles of particle preparation and their characterization.
- study various methods for storage of solids and conveyors available for their transportation.
- understand the performance of different equipment for separation of solids and size reduction

	Section I		
Module	Content	Hours	Weightage in %
1.	Properties of particulate solid: Introduction to particle technology, Characterization of solid particles (size, shape, size distribution), particle size measurement techniques, Mixed particles, specific surface of mixture, Particle population.	02	05
2.	Size reduction and enlargement: Types of equipment and their studies, Closed and open circuit grinding, Laws of crushing and grinding, power requirements, Principles of comminution, Energy and power required for comminution, size reduction equipment, Industrial processes for particle size enlargement, size enlargement equipment comminution, Broad classification, Primary breaking operations, Intermediate crushing by crushers, cone, roll and impact crushers, Ball and fumbling mills—fine grinding, Closed and open circuit grinding, Determination of power consumption.	10	20
3.	Properties of masses of solids: Storage of solids: Angle of repose, bulk storage, storage in bins and silos.	02	08
4.	Conveying of solids: Codes for characterization of solids, screw conveyers, belt conveyers, bucket elevators, pneumatic conveying of solids, Design of conveyor belts, Mechanical and pneumatic conveying equipment and power consumption.	03	07
5.	Screening—equipment and efficiency: Screen analysis, Method of reporting screen analysis, Capacity and effectiveness of screens, Screen analysis, sizing curves, industrial	05	10

	sizing, screening revolving and vibrating screens, Screen efficiency		
	and capacity, Classification: Laws, wet and dry methods, Types of		
	classifiers—stationary, mechanical, centrifugal and hydraulic.		
	Section II		
Module	Content	Hours	Weightage in %
1.	Flow through porous media, Theories of filtration - Principles of filtration, constant rate and constant pressure filtration, Optimum cycle, compressible cakes and filter aids, constant pressure, constant rate filtration, compressible and incompressible cakes, cake resistance, filter media resistance, filter media, filter aids, filtration equipment (batch, continuous), selection criteria, washing of filter cakes, filtration by continuous vacuum and pressure filters.	05	10
2.	Flow through packed beds. Fluidization: Types of fluidization, Geldard classification of particles, minimum fluidization velocity, Pressure drop, Particulate and bubbling fluidization, Applications of fluidization.	04	10
3.	Gravity setting and sedimentation: Gravity clarifiers, sorting clarifiers, Batch sedimentation, rate of sedimentation, Thickening process and sedimentation, Design of thickeners and clarifiers free and hindered setting, Centrifugal sedimentation: Principles of centrifugal sedimentation, Solid gas separation, liquid solid separation, Centrifugation.	05	10
4.	Mixing equipment and characteristics, power consumption and efficiency, Mixing of powders and pastes: Mixers for cohesive and non-cohesive solids, Mixing Index Agitation and mixing of liquids: Basic stirred tank design, Types of impellers, flow patterns, power consumption and scale up.	04	10
5.	Cyclones and electrostatic precipitator, Flotation, Thickeners, Flotation, Physico-chemical principles, Chemistry of flotation reagents and their functions, Flotation processes, Froth flotation machines, Concentration of copper, lead and zinc ores by flotation, Flotation of non-sulphide ores of copper and lead, dolomite, fluorspar, gypsum, phosphates, manganese, silica, sillimanite, graphite and coal, Electrical and magnetic concentration, Electrostatic and magnetic separations, dry and wet type separators.	05	10

List of Practical:

Sr No	Name of Practical	Hours
1.	Determination of particle size by sieve analysis.	02
2.	Determination of the optimum speed and critical speed of a ball mill.	02
3.	Measurement of different bulk properties of powder samples.	02
4.	To study powder compaction behavior using different powder compaction models.	02
5.	Study of particle size reduction by Roll crusher and Jaw crusher	04
6.	Characterization of powder flow ability by Angle of Repose.	04
7.	Obtaining the collection efficiency of cyclone	02
8.	Obtaining settling rates of slurry as function of solid concentration	02
9.	Power consumption in Agitated vessels	02
10.	Study of froth flotation process	02
11.	Study of Plate and Frame filter place	04
12.	Study of Centrifugation process	02

Title	Author/s	Publication
Unit Operations of Chemical	W L McCabe and J C	McGraw-Hill International
Engineering.	Smith.	
Principles of Mineral Dressing.	A M Gaudin.	Tata McGraw-Hill Publishing Co. Ltd., New
		Delhi.
Elements of Ore Dressing.	A F Taggart.	John Wiley and Sons, New York.

Reference Book(s):

Title	Author/s	Publication
Chemical Engineering Vol II,	J.M. Coulson & J.F.	Elsevier, 2003 or
6th Ed.	Richardson	Pergamon Press.
Unit Operations	G.G. Brown Ed.	John Wiley & Sons, 1950
Transport Processes and		
Separation Process Principles'	C.G. Geankopolis	Prentice Hall India, 2003.
4th Ed,		

Web Material Link(s):

http://nptel.ac.in/syllabus/103107091

Course Evaluation:

Theory:

- Continuous Evaluation consists of two tests of 30 marks and 1 hour of duration and average of the same will be converted to 30 marks.
- Faculty evaluation consists of 10 marks as per the guidelines provided by Course Coordinator.
- End Semester Examination consists of 60 marks.

Practical/Tutorial:

- Continuous Evaluation consists of performance of Practical/Tutorial which should be evaluated out of 10 for each practical/Tutorial and average of the same will be converted to 10 marks.
- Internal viva consists of 10 marks.
- Practical performance/quiz/drawing/test of 15 marks during End Semester Exam.
- Viva/Oral presentation of various topics consists of 15 marks during End Semester Exam.

Course Outcome(s):

- understand the basic principles of particles preparation and their characterization.
- have an understanding of solid storage and their conveying in chemical process industries.
- have an understanding of design of sedimentation tanks and other solid fluid separation equipment.
- have knowledge about different size reducing equipment and power requirements during size reduction.
- develop an ability to design chemical engineering processes while including economic safety, environment and ethical consideration.

Department of Chemical Engineering

Course Code: SECH2030 Course Name: Unit Process in Organic Synthesis Prerequisite Course: --

Teaching & Examination Scheme:

Teaching Scheme (Hours/Week)				Ех	aminati	on Scher	ne (Mar	ks)			
Theo	1 11	Practical	Tutorial	Credit	The	eory	Prac	ctical	Tut	orial	Total
Theo	Тy	Plactical	Tutoriai	Credit	CE	ESE	CE	ESE	CE	ESE	TOLAI
3		2	0	4	40	60	20	30	00	00	150

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help the learners to

- develop an acumen for various chemical processes used in industries.
- develop a mindset for various organic synthesis.
- develop an acumen for design and development of process flow diagrams (PFDs) for various chemical processes.

	Section I		
Module	Content	Hours	Weightage in %
1.	Introduction Definition and importance of unit processes in chemical engineering, Concept of unit operation and unit processes and their role in systematizing the cognitive structure of chemical industries, Classification of unit processes, Chemical process kinetics and Factors affecting, Symbols used in Chem. Engineering, Process flow diagram, Introduction to thermochemistry	04	09
2.	Nitration Introduction to nitration reactions, Nitrating agents, Aromatic Nitration, Kinetics and mechanism of aromatic nitration, Nitration of paraffinic hydrocarbon, Thermodynamics of nitration, Process equipment for technical nitration - schimid and Biazz nitrator, Mixed acid for nitration, D.V.S. value and nitric reaction, Comparison of batch Vs. Cont. nitration, Mfg. of Nitrobenzene, Dinitrobenzene, O-and P-Chloronitrobenzene, tri nitrotoluene.	05	12
3.	Amination by reduction Introduction to Amination reactions, Various methods of reductions and factors affecting it, Iron and acid (Bechamp) reduction, Batch and continuous process for manufacture of Aniline from Nitrobenzene, Continuous process for manufacturing of Aniline from nitrobenzene using catalytic fluidized bed reactor.	05	11
4.	Hydrogenation Definition and scope of hydrogenation, Hydrogen: production and	03	07

	properties, Gas catalytic hydrogenation and hydrogenlysis, Kinetics and thermodynamics of hydrogenation reactions, General principles concerning hydrogenation catalysts, Industrial hydrogenation of fat & oil, Production of methanol from CO ₂ & H ₂ . Hydrogen production technologies and petroleum fractions.		
5.	Oxidation Definition and Types of oxidative reactions, Oxidizing agents, Liquid phase oxidation with oxidizing compounds, Liquid-phase oxidation with oxygen, Oxidation of toluene with MnO2. Manufacturing of Acetaldehyde from Acetic acid and Manufacturing of Acetic acid from Ethanol; Vapor phase oxidation of Methanol, Benzene and Naphthalene, Apparatus and its M/s. for oxidation reactions.	05	11
	Section II	1	
Module	Content	Hours	Weightage in %
1.	Esterification and Hydrolysis Definition and scope of Esterification, Esterification by organic acids and by carboxylic acid derivatives, Esters by addition to unsaturated systems and inorganic acids, Definition and scope of hydrolysis, Hydrolyzing agents, Materials susceptible to hydrolysis, Kinetics, thermodynamics, and mechanism of hydrolysis, Equipment for hydrolysis with technical operations.	03	06
2.	Halogenation Definition and scope of halogenation reactions, Thermodynamics and kinetics of halogenation reactions Halogenating agents, Industrial halogenation with types of equipment, Manufacturing of Chlorobenzene, Benzene hexa-chloride and vinyl chloride from Ethylene and Acetylene.	05	09
3.	Sulfonation and sulfation Definition and scope of sulfonation and sulfation, Chemical and physical factors in sulfonation and sulfation, The desulfonation reaction, Use of SO ₃ , SO ₂ , H ₂ SO ₄ as sulfonating and sulfating agents and their applications, Mfg. of Benzene sulfonates, Sulfation of Dimethyl Ether and Lauryl Alcohol.	04	10
4.	Amination by ammonolysis Definition & types of reactions, Aminating agents, Physical and Chemical factors affecting it. Catalyst used in ammonolysis, Kinetics and Thermodynamics of ammonolysis Mfg. of Aniline from chlorobenzene and Nitroaniline from Dichloro Nitro Aniline.	04	08
5.	Hydrolysis Definition and types of hydrolysis, Hydrolyzing agents, Kinetics, thermodynamics, and mechanism of hydrolysis, Industrial Hydrolysis of fat, hydrolysis of carbohydrates, starch to dextrose, Manufacturing of ethanol from ethylene (shell process) Mfg. of phenol from benzene sulfonic.	05	09
6.	Polymerization Introduction & chemistry of polymerization reactions, classifications of polymers methods of polymerization.	02	08

List of Practical:

Sr No	Name of Practical	Hours
1.	Manufacturing of Acetanilide from aniline	04
2.	Manufacturing of Tribromophenol from Phenol	04
3.	Manufacturing of m-dinitrobenzene from Nitrobenzene	04
4.	Estimation of phenol by bromination	04

5.	Organic qualitative analysis(i)Detection of elements present in organic compound(ii)Preliminary tests on organic compounds(iii)Qualitative analysis of compounds like Aniline, nitrobenzene,urea, Benzaldehyde, benzoic acid, ester, Naphthol, chlorobenzene,chloroform, Naphthalene.	06	
6.	Separation of organic compounds present in the mixture	04	
7.	Estimation of concentration in %w/v of the given organic compound.		

Title	Author/s	Publication
Unit Processing of Organic	Groggins P. H.	Tata-McGraw Hill, New Delhi, 2001
Synthesis, 5 th edition		
Shreve's Chemical Process	Austin G. T	McGraw-Hill Pub., 1994.
Industries, 5 th Edition		
Unit Processes in Organic	Desikan, P and	Chemical Engineering Education
Chemical Industries	Sivakumar, T.C.	Development Centre, IIT Madras, 1982.

Reference Book(s):

Reference Book(b)								
Title	Author/s	Publication						
Dryden's Outlines of Chemical Tech. 2nd Ed.	Gopalarao. M. & Sitting M.	East-West Pub., New Delhi, 1997.						
Elementary Principles of Chemical Processes3rd ed.	Felder R.M., Rousseau R.W.	John Wiley, New York, 2000.						
Riggel's Handbook of Industrial Chemistry	Kent J.A.	Van Nostrant Reinhold, 1974.						

Web Material Link(s):

http://nptel.ac.in/courses/103107082/3

Course Evaluation:

Theory:

- Continuous Evaluation consists of two tests of 30 marks and 1 hour of duration and average of the same will be converted to 30 marks.
- Faculty evaluation consists of 10 marks as per the guidelines provided by Course Coordinator.
- End Semester Examination consists of 60 marks.

Practical/Tutorial:

- Continuous Evaluation consists of performance of Practical/Tutorial which should be evaluated out of 10 for each practical/Tutorial and average of the same will be converted to 10 marks.
- Internal viva consists of 10 marks.
- Practical performance/quiz/drawing/test of 15 marks during End Semester Exam.
- Viva/Oral presentation consists of 15 marks during End Semester Exam.

Course Outcome(s):

- build a basic knowledge of the Fundamental structure of organic molecules and their manufacturing process.
- understand and explain the reactions in organic synthesis.
- correlate the same as per their utility in field of Chemical Engineering.
- understand the various Unit Processes and learn about the chemistry and organic compound.

Chemical Engineering Materials & Metallurgy

Course Code: SECH2040

Course Name: Chemical Engineering Materials & Metallurgy Prerequisite Course: --

Teaching & Examination Scheme:

0										
Teaching Scheme (Hours/Week)			Examination Scheme (Marks)							
Theory	Dractical	Tutorial	Credit	The	eory	Prac	tical	Tute	orial	Total
Theory	Practical	Tutorial	Creat	CE	ESE	CE	ESE	CE	ESE	TOLAT
03	02	00	04	40	60	20	30			150
	-		-							

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learners to

- identify the different chemicals and related materials and their properties.
- understand the microstructures, crystallography, defects, and phase diagrams of different materials.
- understand the process involved in chemical and mechanical testing of materials under certain conditions.
- make them aware about the advancements in the area of materials used in chemical and allied industries.

	Section I								
Module	Content	Hours	Weightage in %						
	Introduction to Engineering Materials								
	Classification of engineering materials, Engineering								
1.	requirements from materials, Basics of crystals and their	02	07						
	correlated properties, Factors that govern material selection for								
	engineering applications, Micro and macro examination.								
	Structure and Imperfections in Crystals								
	Introduction, Unit cells and their lattice structure, coordination								
2.	number, crystal structure of metals, Atomic packing factor,	04	03						
	Crystallographic planes and directions, Polymorphism and	01							
	Allotropy, Diffusion in solids, Imperfection in crystals and their								
	types.								
	Properties of Materials								
	Mechanical, Electrical and magnetic properties of materials,								
3.	Selection of material like SS, Ti/Zr alloy and design for	02	05						
	corrosion control, Factors determining the choice of materials								
	of construction in chemical industries.								
	Ferrous metals and its Alloys								
4.	Iron and their alloys - Aluminium, copper, Zinc, lead,	06	15						
4.	Nickel and their alloys with reference to the application in		15						
	chemical industries. Phase Diagrams and Phase								

		1	
	Transformation, TTT and CCT Diagrams. Iron-Iron Carbide and Iron-carbon diagrams, Overview of different tunes of irons. Wrought iron Dig iron Cast iron White		
	types of irons - Wrought iron Pig iron, Cast iron, White Cast Iron, Grey Cast Iron, Malleable Cast Iron and their		
	properties and characteristics, deformation of metals,		
	Types of steel like Chromium, Manganese, Molybdenum		
	and Manganese steels.		
	Non-Ferrous Alloys		
5.	Non-Ferrous Alloys of Aluminium, Magnesium, Copper,		Laboratory
01	Nickel, Titanium, Lead, Tin, Bearing metals, Zinc,		Laboratory
	Microstructure and mechanical property relationships.		
	Metals: their behaviours and properties		
	Solidification of metals and an alloy, Nucleation and		
	Growth, Solidification defects, Effects of Structure on		
6.	Mechanical Properties, Methods to control the grain	05	12
	structure resulting from solidification, Cooling curve of		
	pure metal and alloy, Deformation in polycrystalline materials, Mechanical testing of materials (destructive &		
	non-destructive) testing methods.		
	Heat Treatment and Surface hardening processes		
	Annealing and its types, Normalizing, Aus-tempering, Mar-		
	tempering, Quenching and Temper heat treatment,		
7.	Hardenability, Applications of above processes for the	04	08
	industrial practices, Flame and induction hardening,		
	Carburizing, Nitriding and Carbonitriding, Applications of		
	above processes for the industrial practices.		
0	Powder Metallurgy		. .
8.	Application and advantages, Production of powder,		Laboratory
	Compacting, Sintering, Equipment and process capability. Section II		
Module	Content	Hours	Weightage in %
Mouule	Polymers, Ceramics, and Composites :	nours	Weightage III 70
	Methods of fabrication of materials like timber, plastics, rubber,		
	fibres and other polymeric materials, Ceramics, Ceramic Matrix,		
	Crystalline and non-crystalline ceramic systems, Properties of		
	ceramic materials, Glass and refractories, Cement refractories,		
	Alumina, Zirconia, Silicon Carbide, Sialons, Reaction Bonded		
1.	Silicon Nitride, Processing Composite materials, Fibre reinforced plastic (FRP), Organic materials like wood, plastics,	08	15
1.	and rubber, Advanced materials like Biomaterials and	00	15
	composites with special reference to the applications in		
	chemical Industries, Polymers - Definition, Classification &		
	characteristics, Types of polymerization, Polymer processing,		
	Smart polymer, Advanced polymer Conductive polymer, bio-		
	route prepared nano polymer, Blended polymer, self-cleaning		
	polymer surfaces.		

2.	Membrane Materials and modules Membrane and their types, Membrane Materials, Modules and their types, method of preparation of various membranes, Industrial applications.	04	10
3.	Applications of advance materials in chemical Engineering Colloidal Materials and Their Industrial Applications, Surfactants, Mixed surfactants, Micelles, Vesicles, Micelles, Reverse micelles, Emulsions, Macroemulsions, foams, Thin Films, microbial polymers, green solvents, Industrial enzymes, Protein as Enzymes, Gels and Smart Hydrogels like Hydrogel, Core and shell hydrogel, shell and core hydrogel, green hydrogel, stimuli responsiveness hydrogel.	06	15
4.	Nano materials Metal and Semiconductor Nano materials, Quantum Dots, Wells and Wires, Molecule to bulk transitions, Bucky balls and Carbon Nano tubes, Nano composite, Molecular machines, Nanofactories, Nanocatalysts, Nanocomposites, Bio-analytical tools, Nano/micro arrays, Nano devices, lab-on-a-chip etc.	04	10

List of Practical:

Sr. No.	Name of Practical	Hours			
1.	To understand construction and working of metallographic microscope.	02			
2.	2. To study procedure of specimen preparation for microscopic examinati and to carry out a specimen preparation.				
3.	3. To understand what is micro examination, importance of micro examination and to study various ferrous, non-ferrous microstructures.				
4.	4. To show the effect of different quenching media like Oil, Water and Brine on the hardness of medium carbon steel.				
5.	To find out the effect of varying section size on hardenability of steel and obtain hardness distribution curves of hardened steel cross-section.	04			
6.	To determine machine defects by dye -penetrant test and magnetic particle test.	04			
7.	To determine the hardenability by Jominy end quench test.	04			
8.	Study of different heat treatment processes- annealing, normalizing, hardening and tempering, surface and casehardening to improve properties of steel during processes and applications with the help of muffle furnace.	04			

Text Book(s):

Title	Author/s	Publication
Materials Science and Metallurgy	O. P. Khanna	Dhanpatrai Publication.
Chemical Engineering Materials	Rumford F.	Constable and Company
	Kuillolu F.	Limited, 2nd Edition, 1987.
Membrane Separation Processes	Kaushik Nath	PHI pvt.Ltd.,2008.
Principles of Colloid and Surface	Hiemenz, P. C., and	Manael Dokton NV 1007
Chemistry, 3rd Edn.	R.Rajgopalan	Marcel Dekker, NY, 1997.
Nano chemistry A chemical approach to	Ozin G. A, Andre C.	Royal society of chemistry,
nanomaterials	Arsenault	UK,2005.

Reference Book(s):

Title	Author/s	Publication
Callister's Material Science and Engineering	R. Balasubramanian	Wiley India
Chemical Engineering Materials	Chaudhry H.	Indian Book Distributing Company, 2nd Edition, Delhi, 1982.

Web Material Link(s):

http://nptel.ac.in/downloads/113106032/

Course Evaluation:

Theory:

- Continuous Evaluation consists of two tests of 30 marks and 1 hour of duration and average of the same will be converted to 30 marks.
- Faculty evaluation consists of 10 marks as per the guidelines provided by Course Coordinator.
- End Semester Examination consists of 60 marks.

Practical/Tutorial:

- Continuous Evaluation consists of performance of Practical/Tutorial which should be evaluated out of 10 for each practical/Tutorial and average of the same will be converted to 10 marks.
- Internal viva consists of 10 marks.
- Practical performance/quiz/drawing/test of 15 marks during End Semester Exam.
- Viva/Oral presentation consists of 15 marks during End Semester Exam.

Course Outcome(s):

- interpret important chemical and mechanical properties and classification of engineering materials and metals.
- define different heat treatment process used in industrial applications.
- understand the different types of metals, alloys and chemical materials.
- analyze different microstructure, crystallography and defects of Chemical Engineering materials and metals.
- identify different destructive & non-destructive testing methods used in the practical field and their applications.
- understand the use powder metallurgy and their application to industries.

Centre for Skill Enhancement & Professional Development

Course Code: SEPD2010

Course Name: Critical Thinking, Creativity and Decision Making Prerequisite Course: --

Teaching & Examination Scheme:

ľ	Teaching Scheme (Hours/Week)			Hours/Week) Examination Scheme (Marks)							
	Theory	Practical	Tutorial	Credit	The	eory	Prac	ctical	Tut	orial	Total
	Theory	Flattical	TULUTIAI	creuit	CE	ESE	CE	ESE	CE	ESE	TOLAI
	02	00	00	02	40	60					100

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learners to

- develop a familiarity with the mechanics of critical thinking and logic.
- understand basic concepts of critical and creative thinking.
- explore and understand critical thinking for the purpose of creativity in context of professional, social and personal spectrum.
- explore an application critical thinking and creativity in personal, social, academic, global and profession life.
- understand decision making as a skill to be learned through critical thinking.

	Section I		
Module	Content	Hours	Weightage in %
1.	 Introduction to Critical Thinking Concept and meaning of Critical Thinking Significance of Critical Thinking in personal, social and professional life Thinking with arguments, evidences and language 	08	25
2.	 Applied Critical Thinking Inductive and Deductive Thinking Questioning for Generating Ideas Socratic Questioning and its application 	07	25
	Section II		
Module	Content	Hours	Weightage in %
1.	Conceptual ThinkingSecond order thinkingSynthesizing	03	10
2.	 Creative Thinking and Decision Making Problem Solving Adapting Various Structures of Decision Making 	06	20
3.	 Moral Thinking Generating and structuring ideas Designing and Evaluating the solutions Case Study 	06	20

Title	Author/s	Publication
Thinking Skills for Professionals	B. Greetham, Palgrave	Macmillan, 2010

Reference Book(s):

Title	Author/s	Publication
An Introduction to Critical Thinking and	J. Y. F. Lau	John Wiley & Sons., New
Creativity: Think More, Think Better		hercy
Critical Thinking: A Beginner's Guide to	Jennifer Wilson	CreateSpace Independent
Critical Thinking, Better Decision Making		Publishing Platform, 2017
and Problem Solving		_
Creativity and Critical Thinking	edited by Steve Padget	Routledge 2013

Course Evaluation:

Theory:

- Continuous Evaluation consists of two tests of 30 marks and 1 hour of duration and average of the same will be converted to 30 marks.
- Faculty evaluation consists of 10 marks as per the guidelines provided by Course Coordinator.
- End Semester Examination consists of 60 marks.

Course Outcome(s):

- comprehend the concept and application of critical thinking as well as its applications.
- understand the critical thinking in context of creativity, logical arguments, moral reasoning.
- understand the application of critical thinking for social, academic, global and professional spectrum.
- correlate their thinking skills for better productivity and outcome based tasks.
- apply 360° analysis of the situation for decision making.

Department of Science & Humanities

Course Code: SESH2022 Course Name: Numerical & Statistical Analysis Prerequisite Courses: SESH1020-Linear Algebra & Vector Calculus SESH2031-Differential Methods for Chemical Engineers

Teaching & Examination Scheme:

Teaching Scheme (Hours/Week)			Teaching Scheme (Hours/Week) Examination Scheme (Marks)							
Theory	Practical	Tutorial	Credit	The	eory	Prac	ctical	Tut	orial	Total
Theory	Plactical	Tutorial	Crean	CE	ESE	CE	ESE	CE	ESE	TOLAI
3	-	2	5	40	60	-	-	50	0	150
				_						

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learners to

- provide the knowledge of numerical analysis & statistical methods.
- mentally prepare the students to identify and formulate the engineering problem and obtain their solution.
- inculcate the analytical skills to apply the Numerical & Statistical techniques to the problems of respective field.

	Section I		
Module	Content	Hours	Weightage in %
1.	Complex Variables Complex numbers with operators and geometric representation, Analytic function, Derivative of complex function, Cauchy-Riemann equation, Trigonometric and Hyperbolic functions, Complex Integration, Conformal Mapping, Linear functional transformations, Cauchy's Integral, Calculation of residue	10	20
2.	Numerical Solutions of Linear and Non-linear Equations Errors and Their computations, General error formula, Bisection Method, Iteration Method, Newton-Raphson Method, Solution of system of non-linear equation, Solution of linear system, Gauss Elimination	6	13
3.	Numerical Differentiation and Integration Interpolation, Finite Differences, Error in numerical differentiation, Cubic Splines Method, Differentiation Formulae, Numerical solution of ODEs, Picard's Method, Euler's Method, Runge-Kutta Method, Numerical Integration, Trapezoidal Rule, Simpson's 1/3-rule, Simpson's 3/8-rule, Euler-Maclaurin Formulae	7	17
	Section II		
Module	Content	Hours	Weightage in %
1.	Basics of Statistics Elements, Variables, Observations, Quantitative and Qualitative data, Corss-sectional and Time series data, Frequency distribution, Dot plot, Histogram, Cumulative distribution, Measure of location,	7	15

Mean, Median, Mode, Percentile, Quartile, Measure of variability,

	Range, Interquartile Range, Variance, Standard Deviation, Coefficient of Variation, Regression Analysis, Regression line and regression coefficient, Karl Pearson's method		
2.	Probability Distribution Introduction, Conditional probability, Independent events, independent experiments, Theorem of total probability and Bayes' theorem, Probability distribution, Binomial distribution, Poisson distribution, Uniform distribution, Normal distribution.	8	18
3.	Testing of Hypothesis Introduction, Sampling, Tests of significance for parametric test, Null Hypothesis, Type 1 and Type 2 errors, Level of significance, Chi-square test, Student's t-test, Seducer's f-test	7	17

List of Tutorials:

Sr No	Name of Tutorial	Hours
1.	Complex Variables-1	4
2.	Complex Variables-2	2
3.	Numerical Solutions of Linear and Non-linear Equations-1	2
4.	Numerical Solutions of Linear and Non-linear Equations-2	4
5.	Numerical Differentiation and Integration-1	2
6.	Numerical Differentiation and Integration-2	2
7.	Basics of Statistics-1	2
8.	Basics of Statistics-2	4
9.	Probability-1	2
10.	Probability-2	2
11.	Testing of Hypothesis-1	2
12.	Testing of Hypothesis-2	2

Text Book(s):

Title	Author/s	Publication
Advanced Engineering Mathematics	Erwin Kreyszig	Wiley India Pvt. Ltd.
		New Delhi.
Probability and Statistics for Engineers	Richard A. Johnson	Pearson India Education
	Irwin Miller, John Freund	Services Pvt. Ltd., Noida.

Reference Book(s):

Title	Author/s	Publication
Higher Engineering Mathematics	B. S. Grewal	Khanna Publishers, New Delhi
Advanced Engineering Mathematics	R. K. Jain, S. R.	Narosa Publishing House, New Delhi.
	K. Iyengar	
Introductory Methods of Numerical Analysis	S. S. Sastry	PHI Learning Pvt. Ltd., New Delhi.

Web Material Link(s):

- http://nptel.ac.in/courses/111106094/
 http://nptel.ac.in/courses/111106084/
- http://nptel.ac.in/courses/111105035/
- http://nptel.ac.in/courses/111101003/
- http://nptel.ac.in/courses/111105090/

Course Evaluation:

Theory:

- Continuous Evaluation consists of two tests of 30 marks and 1 hour of duration and average of the same will be converted to 30 marks.
- Faculty evaluation consists of 10 marks as per the guidelines provided by Course Coordinator.
- End Semester Examination consists of 60 marks.

Tutorial:

- Continuous Evaluation consists of performance of tutorial which should be evaluated out of 10 Marks for each tutorial and average of the same will be converted to 30 marks.
- MCQ based examination consists of 10 marks.
- Internal viva consists of 10 marks.

Course Outcome(s):

- derive numerical solution of linear and non-linear system of equation.
- acquire knowledge of finite differences, interpolation, numerical differentiation and numerical integration.
- select appropriate method to collect data and construct, compare, interpret and evaluate data by different statistical methods.
- apply concept of probability in decision making, artificial intelligence, machine learning etc.

Department of Chemical Engineering

Course Code: SECH2050

Course Name: Momentum Transfer (Fluid Flow Operations) Prerequisite Course: --

Teaching & Examination Scheme:

Teaching Scheme (Hours/Week)				Exa	aminati	on Schei	ne (Ma	rks)		
Theory	Practical	Tutorial	Credit	The	eory	Prac	ctical	Tut	orial	Total
Theory	Flactical	Tutoriai	creuit	CE	ESE	CE	ESE	CE	ESE	TUtai
3	2	0	4	40	60	20	30	0	0	150

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learners to

- get the introductory idea and explanation of basic fundamentals of Fluid Flow Operations which is used in the applications of chemical engineering, Porous media movement, Aerodynamics, hydraulics, Marine Engineering, Gas dynamics etc.
- learn Fluid Properties.
- understand the importance of flow measurement and its applications in Industries and to obtain the loss of flow in a flow system.

	Section I							
Module	Content	Hours	Weightage in %					
1.	$\begin{array}{l} \textbf{Properties of fluids and concept of pressure} \\ Definitions of Unit operations, Basic concepts of fluids and its application, Properties of fluids (Density, Viscosity, Surface Tension, Compressibility, Capillary, Vapour Pressure, Bulk Modulus, Cavitation, Classification of Fluids), Unit Conversion, Dimensional analysis, Dimensional homogeneity, Dimensionless equations, Raleigh and Buckingham \pi theorem, Common \pi groups, Non Dimensional Numbers, Similarities – Geometrical, Kinematics and Dynamic. \\ \end{array}$	03	5					
2.	Fluid statics & its application Nature of fluids: Incompressible and compressible fluids, Pressure concepts, Force and Pressure, Pascal's law of Pressure at a point, Pressure measurement by Manometers – U tube, Inclined U tube and Differential, Centre of Pressure, Hydrostatic equilibrium in gravitational and centrifugal field, Hydrostatic forces on surface – Vertical, Horizontal and Inclined, Forces on curved Surfaces, Buoyancy and Buoyant Force, Centre of Buoyancy and Meta Centre, Determination of Metacentric Height, Stability of Floating and Submerged Body, Position of metacentre relative to Centre of buoyancy. Manometers,	04	10					

	Inclined manometer, Continuous gravity and centrifugal decanter.		
3.	Fluid statics, boundary layers & its applications Nature of fluids: Incompressible and compressible fluids, Pressure concepts, Hydrostatic equilibrium in gravitational and centrifugal field, Manometers, Inclined manometer, Continuous gravity and centrifugal decanter, Concept of Boundary Layer, Boundary layer Thickness, Momentum Thickness, Displacement Thickness, Drag and Lift, Separation of Boundary layer, Streamlined and Bluffed Bodies.	03	05
4.	Momentum Balance and their Applications Kinematics of fluid flow, Types of flow, Steady and Unsteady Flow, Potential flow, One – two and three Dimensional Flow, Uniform and Non Uniform Flow, Rotational and Irrotational Flow, Stream Lines and Stream Function, Velocity Potential Function, Relation between stream and velocity potential function, Flow nets, Continuity Equation for 2D and 3D flow in Cartesian co-ordinates system , Laminar flow, Reynolds number, Newtonian and non-Newtonian fluids, Velocity gradient and Rate of shear, Expression for co-efficient of friction – Dracy Weishbach Equation, Moody's Diagram resistance for smooth and rough pipes, Viscosity of gases and liquids, Turbulent flow, Nature of turbulence, Eddy viscosity, Eddy diffusivity of momentum, Flow in boundary layers, Laminar and turbulent flow in boundary layers, Boundary layer formation in straight tube and flat plates, Boundary layer thickness, Boundary layer separation and wake formation.	04	10
5.	Basic fluid equations & fluid dynamics Stream line and stream tubes, Average velocity, Mass velocity, Momentum balance, Bernoulli's equation without friction & its applications, Correction of Bernoulli's equation for fluid friction, Pump work in Bernoulli's equation. Newton's law of motion, Euler's Equation and its applications, Momentum Equation, Pitot Tube, Determination of volumetric flow with pitot tube, Principle of Venturimeter, Pipe Orifice and Rotameter.	03	05
6.	Flow of incompressible fluids through ducts and its applications in conduits and thin layers Flow of incompressible fluids in pipes, Friction factor, Laminar flow of Newtonian and non-Newtonian fluids, Turbulent flow in pipes and closed channels, Effect of roughness, Friction factor chart, Drag reduction in turbulent flow Friction factor in flow through channels of noncircular cross section, Friction from changes in velocity or direction, Effect of fittings and valves, Major and Minor Losses in Pipes, Hydraulic Gradient line and Total energy line, Equivalent Pipes, Pipes in series and parallel, Siphon, Power transmission through pipe, Moody's Diagram, Practical use of velocity heads in design, Minimization expansion and contraction losses. Flow through Open Channel: Specific Energy and Specific Force, Critical Flow, Hydraulic Jump, Measurement of Discharge in open Channels.	06	15

	Section II						
Module	Content	Hours	Weightage in %				
1.	Flow of compressible fluids and its applications Introduction to compressible flow, flow through pipes and nozzles, Fans, Blowers ejectors and compressors; Continuity equations, Velocity of sound, Stagnation temperature, Processes of compressible flow.	05	10				
2.	Flow of Fluids through Solids Form drag - skin drag - Drag co-efficient. Flow around solids and packed beds. Friction factor for packed beds. Ergun's Equation - Motion of particles through fluids - Motion under gravitational and centrifugal fields - Terminal settling velocity. Fluidisation - Mechanism, types, general properties – applications	05	10				
3.	Transportation and Metering Transportation of fluids, Pipes, pipe standards, fittings, pipe joints, valves and their constructional features, Fluid moving machinery: Positive displacement and centrifugal pumps, centrifugal pump theory, concept of NPSH, pump performance and characteristics, Measurement of fluid flow: Orifice meter, venturi meter, pitot tube, rotameter, weirs and notches Wet gas meter and dry gas meter, Area meters; Head meters; Mass flow meter; Hot-wire anemometer, Hot wire and hot film anemometers.	06	15				
4.	Applications of fluid mechanics Pipe, fitting and valves, pumps, compressor, blowers and fans, Flow past immersed bodies: Drag, Drag coefficients, Flow through beds of solids, Particle motion, Terminal velocity, Hindered settling, Settling and rise of bubbles and drops, Fluidization, Special cases of Single and two phase flow through packed beds, two-phase gas liquid flow in pipes, Essentials of gas solid flows. Introduction to computational fluid dynamics (CFD).	06	15				

List of Practical:

Sr No	Name of Practical	Hours
1.	Determine metacentric height of floating body.	02
2.	Measurement of pressure using different types of manometers.	04
3.	Determine Co-efficient of Discharge by venturimeter, Orificemeter and Rotameter.	04
4.	Verification of Bernoulli's apparatus.	02
5.	Measurement of velocity of flow using Pitot tube.	02
6.	Measurement of Friction factor for Different pipes & annulus.	02
7.	Measurement of viscosity using Redwood Viscometer.	02
8.	Determine discharge through triangular/trapezoidal / rectangular notch.	02
9.	Determine different flow patterns by Reynolds's apparatus.	02
10.	Measurement of lift and drag of aerofoil.	02
11.	Measurement of static pressure distribution around aerofoil using wind tunnel.	02
12.	Experiment on viscosity by stoke's law	02
13.	Experiments on characteristics of centrifugal pumps	02

Title	Author/s	Publication
Textbook of Fluid Mechanics and Hydraulic Machines	R. K. Bansal	Laxmi Publications
Introduction to Fluid Mechanics and Fluid Machines	S.K. Som & Biswas.G	Tata McGraw Hill Publication
Unit Operations of Chemical Engineering	McCabe W.L., Smith J.C., Harriott P.	McGraw Hill

Reference Book(s):

Title	Author/s	Publication
Fluid Mechanics	Frank M. White	Tata McGraw Hill Publication
Fluid Mechanics	R.K. Rajput	Schand Publication
Fluid Mechanics for Chemical	De Nevers N	McGraw-Hill
Engineers		

Web Material Link(s):

http://nptel.ac.in/courses/112105171/1

Course Evaluation:

Theory:

- Continuous Evaluation consists of two tests of 30 marks and 1 hour of duration and average of the same will be converted to 30 marks.
- Faculty evaluation consists of 10 marks as per the guidelines provided by Course Coordinator.
- End Semester Examination consists of 60 marks.

Practical/Tutorial:

- Continuous Evaluation consists of performance of Practical/Tutorial which should be evaluated out of 10 for each practical/Tutorial and average of the same will be converted to 10 marks.
- Internal viva consists of 10 marks.
- Practical performance/quiz/drawing/test of 15 marks during End Semester Exam.
- Viva/Oral presentation of various topics consists of 15 marks during End Semester Exam.

Course Outcome(s):

- understand fundamentals of fluids.
- analyze various flow problems and flow characteristics.
- determine major and minor losses through different pipes.
- apply the concept of fluid mechanics to design various system.

Department of Chemical Engineering

Course Code: SECH2061 Course Name: Physical Inorganic and Analytical Chemistry Prerequisite Course: SESH1220 – Chemistry

Teaching & Examination Scheme:

Teaching Scheme (Hours/Week)				Ex	aminati	on Scher	ne (Mar	ks)		
Theory	ory Practical Tutorial Cr	Tutorial	Credit	The	eory	Prac	ctical	Tut	orial	Total
Theory		Tutoriai	Tutoriai	Cleuit	CE	ESE	CE	ESE	CE	ESE
3	2	0	4	40	60	20	30	00	00	150

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learners to

- provide the basic knowledge of physical, inorganic and analytical chemistry to students in the context of industrial need to make a good foundation in Chemistry which will help to the students in their self-development and to cope up with industries need.
- understand the basics of different chemistry
- make them aware about various analytical techniques used for the analysis of chemical substances
- use physical chemistry and its theoretical principles and experimental techniques to investigate the chemical transformations and Physical changes accompanying them.
- make them aware about the inorganic chemistry and its qualitative analysis.

	Section I							
Module	Content	Hours	Weightage in %					
	Properties of Liquid and preparation of solution							
	Define the terms: Solute, Solvent and Solution, Different standards							
1	of solutions like Primary standards and Secondary standards,	02	04					
1.	Definition and different methods of expressing concentration,	02	04					
	Definition of the Surface tension, Parachor, Refractive index, Molar							
	refraction, Specific refraction, Viscosity.							
	Electro analytical techniques for analysis							
	Basic concepts, Standard reduction potentials, Measurement of							
	overall redox reaction tendency, Introduction to Potentiometry,							
2.	Electrodes (Reference electrode, Saturated calomel reference	06	14					
	electrode, indicator electrode, pH electrode), potentiometric							
	titration, Karl Fischer titration (End point detection, The							
	coulometric method)							

3.	Phase Rule Introduction, Phase Rule and its merits and demerits, Phase diagrams of single component systems (H ₂ O and Sulphur), two component systems involving eutectic systems (Pb-Ag, Sn-Mg), Applications.	03	07
4.	Nuclear Chemistry Basic terms and concepts, Types of nuclear reactions, Nuclear fission and fusion, nuclear reactors, radiation measurements (Detectors- Gas ionization detectors- principle, Ion chambers- proportional counter, G.M. Counter-scintillation detector- principle, features, Inorganic & organic scintillators, solid state detectors), disposal of nuclear waste.	05	11
5.	Emerging Trends in Green Chemistry Introduction to Green Chemistry, Twelve principles of Green Chemistry with examples, Designing a Green Synthesis, Example of green synthesis (adipic acid, catechol, Methyl Methacrylate).	02	04
6.	Microscopy Techniques Principles, Instrumentation, Analysis of images/artifacts, Applications, AFM (Atomic force microscopy), SEM (Scanning electron microscope), TEM (Transmission electron microscopy), FTIR.	04	10
	Section II	I	L
Module	Content	Hours	Weightage in %
1.	Corrosion and its Control Introduction and theories of corrosion, Dry corrosion (chemical), Wet corrosion (electrochemical), Bio corrosion, Mechanism of corrosion, Factors influencing corrosion (ratio of anodic to cathodic areas, nature of metal, nature of corrosion product, nature of medium – pH, conductivity, and temperature), Corrosion control and prevention methods, corrosion inhibitors, cathodic and anodic protection and Electroplating. Protective coatings, chemical principles involved, boiler corrosion, inter granular corrosions.	07	17
2.	Instrumental Methods Of Chemical Analysis : Spectroscopic methods Basic concepts, Instrumentation, Interpretation of data and relevant applications, Ultraviolet spectroscopy (UV), Infrared spectroscopy (IR), Nuclear Magnetic Resonance (NMR), Mass Spectrometry.	06	13
3.	Thermal methods of analysis TGA, DTA, DSC (Principle, Instrumentation, Quantitative aspects of curves and/or Interpretation of curves, Applications)	05	10
4.	Separation Techniques Principle, Instrumentation, selection of column and its specifications, applications and Limitations, Planar Chromatography (Paper chromatography, Thin Layer Chromatography), Gas Chromatography (GC), High Performance Liquid Chromatography (HPLC)	05	10

List of Practical:

Sr. No.	Name of Practical	Hours
1.	Inorganic qualitative analysis of soluble and insoluble salts belonging to group I to group V and K ⁺ , NH ₄ ⁺ , Na ⁺ having anions $CO_3^{2^-}$, S ²⁻ , X ⁻ , PO ₄ ³⁻ , NO ₃ ⁻ , SO ₄ ²⁻ , OH ⁻ etc. (i) Gr.I (Ag ⁺ , Hg ⁺ , Pb ²⁺ etc.) (ii) Gr.II (Cu ²⁺ , Hg ²⁺ , Bi ³⁺ , Sn ²⁺ , Pb ²⁺) (iii) Gr.III (Al ³⁺ , Fe ³⁺ , Fe ²⁺ , Cr ³⁺) (iv) Gr.IV (Zn ² , Ni ²⁺ , Mn ²⁺ , Co ²⁺) (v) Gr.V (Ca ²⁺ , Ba ²⁺ , Sr ²⁺) (vi) Gr.VI (Mg ²⁺)	10
2.	 Gravimetry: (i) Analysis of inorganic mixture containing BaSO₄ & NH₄Cl. (ii) Analysis of inorganic mixture containing Na₂CO₃ & NaHCO₃. (iii) Determination of nickel present in the given solution. 	06
3.	Determination of the rate constant of hydrolysis of an ester catalyzed by an acid.	02
4.	Study of the kinetics of reaction between K ₂ S ₂ O ₈ and KI	02
5.	Determination of cell constant of a conductometer.	02
6.	Determination of dissociation constant of acetic acid using conductometer.	02
7.	Determination of dissociation constant of acetic acid using pH-meter.	02
8.	Determination of molar refraction index of the given compound using refractometer	02
9.	Determination of relative coefficient of viscosity of the given compound using Ostwald viscometer	02

Text Book(s):

Title	Author/s	Publication				
Text Book of Engineering Chemistry	Chawla S.	Dhanpat Rai & Co. Pvt. Ltd., Delhi, 2003.				
Engineering Chemistry	Sharma B. K.	Krishna Prakashan Media (P) Ltd,				
		Meerut.,2001				
Instrumental Methods of Chemical	Ewing G. W.	Tata-McGraw Hill., New Delhi, 2001.				
Analysis						
Basis Concept of Analytical Chemistry	Khopkar S. M.	New Age International Publishers, 1998.				
A Text Book of Quantitative Chemical	Vogel A. I.	ELBS UK, 5th Edition, 1996.				
Analysis						
A Text Book of Polymer Science	Billmeyer F. W.	Wiley Interscience, New York, 3rd ed., 1984.				

Reference Book(s):

Title	Author/s	Publication						
Analytical Chemistry for Technicians (4 th edition)	John Kenkel	CRC Press, Taylor & Francis Group						
Corrosion Engineering Principles and Practice	Pierre R. Roberge	The McGraw-Hill Companies						
New-Trends-in-Green-Chemistry	V. K. Ahluwalia, M.Kidwai	Kluwer Academic Publishers, Boston Dordrecht London & Anamaya Publishers, New Delhi						
Atomic Force Microscopy	Peter Eaton	Oxford University Press						
Fundamentals of Atomic Force Microscopy	Ronald G. Reifenberger	World Scientific Publishing Co						
Principles and Practice of Modern Chromatographic Methods	Robards K., Jackson P., Haddad P A.	Elsevier Academic Press						

Fundamentals of Analytical Chemistry	Douglas A. S., Donald M. W., Holler H. J., Crouch H. R.	Brooks Cole; 9 th edition
Introduction to Spectroscopy	Donal L. P., Gary M. L., George S. K. , James A. V.	Brooks Cole

Web Material Link(s):

http://nptel.ac.in/courses/105104148/

Course Evaluation:

Theory:

- Continuous Evaluation consists of two tests of 30 marks and 1 hour of duration and average of the same will be converted to 30 marks.
- Faculty evaluation consists of 10 marks as per the guidelines provided by Course Coordinator.
- End Semester Examination consists of 60 marks.

Practical/Tutorial:

- Continuous Evaluation consists of performance of Practical/Tutorial which should be evaluated out of 10 for each practical/Tutorial and average of the same will be converted to 10 marks.
- Internal viva consists of 10 marks.
- Practical performance/quiz/drawing/test of 15 marks during End Semester Exam.
- Viva/Oral presentation consists of 15 marks during End Semester Exam.

Course Outcome(s):

- be familiar with the basics of different chemistries used in chemical industries
- have theoretical and practical knowledge about modern analytical techniques and its quantitative analysis.
- perform in industry for various analytical tools

Department of Chemical Engineering

Course Code: SECH2070 Course Name: Chemical Engineering Thermodynamics-I Prerequisite Course: --

Teaching & Examination Scheme:

Teaching Scheme (Hours/Week)				Ех	aminati	on Scher	ne (Mar	ks)		
Theory	Practical	Tutorial	Credit	The	eory	Prac	ctical	Tut	orial	Total
Theory		Tutoriai	Credit	CE	ESE	CE	ESE	CE	ESE	TOLAI
3	0	1	4	40	60	00	00	50	00	150

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help the learners to

- understand and appreciate thermodynamics as applied to various Chemical Engineering Processes.
- avail practical experience on the principles, viz., thermodynamic laws, Solution thermodynamics, Phase equilibrium and reaction equilibrium.

	Section I		
Module	Content	Hours	Weightage in %
1.	Concept of Equilibrium: Entropy & Gibbs Free Engergy, First Law of Thermodynamics (Open and Closed Systems) and Equations of Change (dU, dH, dA, dG).	04	10
2.	PVT behavior including EOS for mixtures; Fugacity estimation/ calculations based on PVT behavior, Heat effects accompanying chemical Reactions. Phase equilibrium criteria and VLE calculations for different pressure ranges including flash calculations.	07	15
3.	Activity coefficient calculation from experimental VLE data and data reduction, applications of Gibbs-Duhem relation for calculations of and consistency check for VLE data.	06	10
4.	Phase diagrams for miscible, partially miscible and immiscible liquid mixtures, introduction to LLE and VLLE calculations.	06	15
	Section II		
Module	Content	Hours	Weightage in %
1.	Thermodynamic Properties of Solutions - Introduction to fugacity and activity, Activity coefficients-Partial molar properties- miscible system, immiscible system, Chemical potential as a partial molar property-Lewis randall rule-Roults and Henry's law-Gibbs Duhem Equation Mathematical relation among thermodynamic functions, Mexwell's relations, Interrelation between H, S, U, G, C _p , C _v , properties of single and two phase system. Types of thermodynamic diagrams. Partially immiscible system, testing of vapor-liquid equilibrium data, Van Laar equation. Margules equation, Redlich-Kister equation, P-X-Y, T-X-Y, & X-Y Diagram, vapor-liquid equilibrium of ideal and non-ideal solution.	15	30

ſ		Refrigeration and liq	uefaction: Carnot	refrigerator,	Vapour		
	2.	compression cycle, Absorption refrigeration, Choice of refrigerant					20
		Heat pump, Liquefactior	i processes.				

Title	Author/s	Publication
Introduction to Engineering	J.M. Smith, Hendrick Van	McGraw Hill, New York, 2005.
Thermodynamics	Ness, Michael M. Abbott,	
Chemical Engineering	S. Sundaram	Ahuja Publishers, New Delhi, 2001
Thermodynamics		
A Textbook of Chemical Engineering	K.V. Narayanan	PHI Learning, 2004
Thermodynamics		

Reference Book(s):

Title	Author/s	Publication
Chemical Engineering Thermodynamics	B.F. Dodge	McGraw Hill, New York, 1971.
Chemical Engineering Thermodynamics	Y.V.C. Rao	Universities Press (1997)
Chemical Process Thermodynamics 3 rd Ed,	B.G. Kyle	Prentice Hall India, 1994
Chemical Process Principles Part II	Hougen, O.A., Watson, K.M., and Ragatz, R.A.	John Wiley & Sons, (CBS Publishers & Distributors, New Delhi).

Web Material Link(s):

http://nptel.ac.in/courses/103106070/

Course Evaluation:

Theory:

- Continuous Evaluation consists of two tests of 30 marks and 1 hour of duration and average of the same will be converted to 30 marks.
- Faculty evaluation consists of 10 marks as per the guidelines provided by Course Coordinator.
- End Semester Examination consists of 60 marks.

Practical/Tutorial:

- Continuous Evaluation consists of performance of Practical/Tutorial which should be evaluated out of 10 for each practical/Tutorial and average of the same will be converted to 10 marks.
- Internal viva consists of 10 marks.
- Practical performance/quiz/drawing/test of 15 marks during End Semester Exam.
- Viva/Oral presentation of various topics consists of 15 marks during End Semester Exam.

Course Outcome(s):

- calculate enthalpies, entropies and free energies of real gases from (a) equations of state (b) measured quantities
- calculate saturation pressure and latent heats of vaporization from cubic equations of state.
- correlate experimental VLE data of pure component and ideal mixtures with suitable equations.
- enhance their technical skills in the form of numerical analysis.

Department of Chemical Engineering

Course Code: SECH2080 Course Name: Mass Transfer Operations Prerequisite Course: --

Teaching & Examination Scheme:

0										
Teaching Scheme (Hours/Week)			Examination Scheme (Marks)							
Theory	Dractical	Tutorial	Credit	The	eory	Prac	Practical Tutorial	Total		
Theory	Practical	Tutorial	Credit	CE	ESE	CE	ESE	CE	ESE	TOLAI
3	2	0	4	40	60	20	30	00	00	150

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help the learners to

- learn the concept of diffusion in gas, liquid & solid.
- understand the basics of inter-phase mass transfer.
- learn application of gas-liquid operation and simultaneous heat and mass transfer operations.

	Section I		
Module	Content	Hours	Weightage in %
1.	Introduction Introduction to Mass Transfer Operation, Classification and fundamentals of mass transfer	02	05
2.	Molecular diffusion in fluids Stefan- Maxwell's diffusion equations, Prediction of diffusion coefficients for gases and liquids, Fick's law, Molecular and eddy diffusion, Diffusion in gaseous mixtures, liquid mixtures and solids, Types of solid diffusion, Steady state diffusion molar flux at avg. molar velocity, and mass avg velocity, Steady state diffusion of fluids at rest and laminar condition and for gases, A diffusing in non-diffusing B, equimolar counter current diffusion for gases, A diffusing in non-diffusing B, equimolar counter current diffusion for liquids.	07	15
3.	Multiphase Mass Transfer Coefficient Individual and overall mass transfer coefficient, mass transfer theories - Film, penetration and surface renewable theory, Mass transfer coefficients - Individual and overall with relations, Analogies between momentum, heat and mass transfer to predict mass transfer coefficients.	07	15
4.	Humidification and dehumidification Introduction, Vapour Liquid Equilibria, Enthalpy of saturated and unsaturated vapour liquid mixture, Adiabatic saturation curves, Psychometric Chart, Concept of Wet and dry bulb temperature, Lewis relations, Water cooling with air, Cooling tower theory, Design of cooling towers and their selection, Cooling tower fillings, Calculation of make-up water requirement of cooling tower, Industrial cooling towers.	07	15

	Section II		
Module	Content	Hours	Weightage in %
1.	Drying Introduction, Equilibrium, Hysteresis, Definitions: Moisture content, Equilibrium moisture, Bound moisture, Unbound moisture, Free moisture, Direct driers and Indirect dryers, Freeze drying, Rate of batch drying, Rare of drying curve, Time of drying, Batch and continuous drying equipment – Tray dryer, Rotary dryer, spray dryer, Natural draft dryer, Fluidized bed dryer, Tunnel.	06	14
2.	Crystallization Crystallization – concept, definition and types, Magma, Mother Liquor, Crystal size, Methods of achieving super saturation, Nucleation and crystal growth and Factors influencing them, Different crystallizers and their design principles, calculation of yield, MSMPR crystallization model, melt crystallization.	06	14
3.	Super Critical Fluid (SCF) Extraction Working Principal, Advantage & Disadvantages of supercritical solvents over conventional liquid solvents, commercial applications of supercritical extraction, Decaffeination, ROSE process, Applications under research.	03	07
4.	Reactive and Catalytic Distillation Concept, Advantages and Disadvantages of BALE and KATMAX packings, Manufacturing of MTBE and ETBE.	02	04
5.	Pressure Swing Distillation Concept and working, Advantages of PSD over azeotropic and extractive distillation, Applications.	02	04
6.	Pressure Swing Adsorption Concept and working, Advantages and disadvantages of PSA over cryogenic distillation, Four step PSA, Six step PSA.	03	07

List of Practical:

Sr No	Name of Practical	Hours
1.	Study of diffusion coefficient	02
2.	Study of mass transfer coefficient	02
3.	Study of latent heat of vaporization	02
4.	Study of Humidification and dehumidification operations	06
5.	Study of cooling tower	02
6.	Study of drying rate	02
7.	Study of Drying Operations – Batch, Rotary, Spray	02
8.	Study of Fluid bed dryer	04
9.	Study of Crystallization Operations	04
10.	Study of Crystal rate formation	04

Text Book(s):

Title	Author/s	Publication
Unit Operations of Chemical Engineering	W L McCabe and J C Smith.	McGraw-Hill International
Mass Transfer Operations	Trebal, R.E.	McGraw-Hill, Inc.

Reference Book(s):

Title	Author/s	Publication		
Chemical Engineering Vol II, 6th Ed.	J.M. Coulson & J.F.	Electrical 2002 on Development Dress		
Chemical Engineering vol II, oui Eu.	Richardson	Elsevier, 2003 or Pergamon Press.		
Unit Operations	G.G. Brown Ed.	John Wiley & Sons, 1950		
Transport Processes and Separation	C.G. Geankopolis	Prentice Hall India, 2003.		
Process Principles' 4th Ed	C.G. Geankopons	Prentice Hall India, 2005.		

Web Material Link(s):

https://nptel.ac.in/courses/103103035/

Course Evaluation:

Theory:

- Continuous Evaluation consists of two tests of 30 marks and 1 hour of duration and average of the same will be converted to 30 marks.
- Faculty evaluation consists of 10 marks as per the guidelines provided by Course Coordinator.
- End Semester Examination consists of 60 marks.

Practical/Tutorial:

- Continuous Evaluation consists of performance of Practical/Tutorial which should be evaluated out of 10 for each practical/Tutorial and average of the same will be converted to 10 Marks.
- Internal viva consists of 10 marks.
- Practical performance/quiz/drawing/test of 15 marks during End Semester Exam.
- Viva/Oral presentation consists of 15 marks during End Semester Exam.

Course Outcome(s):

- familiar with the basic phenomenon of mass transfer involving phases.
- able to apply the mathematical and design concepts of mass transfer in gas liquid systems like absorption, humidification, drying and crystallization.
- gaining good knowledge of required optimum condition for a gas-liquid system.
- familiar with fundamentals of thermodynamics as applied to various processes.
- able to understand the properties as applied to ideal and real gases.
- able to understand the equilibrium states for mixture of gases, phases and chemical reaction.
- able to verify the fundamentals learnt viz., application of thermodynamic laws, solution thermodynamics, phase equilibrium and reaction equilibrium in Chemical Engineering thermodynamics by conducting experiments and carry out the evaluation.

Department of Chemical Engineering

Course Code: SECH2091 Course Name: Bio-Chemical Engineering Prerequisite Course: SESH1220 - Chemistry

Teaching & Examination Scheme:

Teaching Scheme (Hours/Week)			Examination Scheme (Marks)									
These	Drug attional					The	eory	Prac	tical	Tute	orial	Tatal
Theory	Practical	Tutorial (Tutorial	Credit	CE	ESE	CE	ESE	CE	ESE	Total	
3	0	0	3	40	60	00	00	00	00	100		

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help the learners to

- impart the basic concepts of biochemical engineering and basics of bioprocesses.
- develop understanding about biochemistry and bio chemical processes.
- develop understanding about application of engineering principles in biochemical.

	Section I		
Module	Content	Hours	Weightage in %
1.	Introduction to Biochemical Engineering History, Background, Interdisciplinary approach, Integrated bioprocess, Unit operations in bioprocess.	01	02
2.	Microbial Growth Kinetics Cell growth in Batch Culture, Continuous culture – multistage system, Phases of cell growth in batch cultures, Simple unstructured kinetic models for microbial growth, Monod model, Factors affecting microbial growth, Maintenance energy, environmental factors affecting microbial growth, heat generation by microbial growth.	08	16
3.	Metabolic Stoichiometry Cell growth and product formation, Elemental balances, Degrees of reduction of substrate and biomass available, electron balances, Yield coefficient of biomass and product formation, Maintenance coefficients, Energetic analysis of microbial growth and product formation, oxygen consumption.	05	11
4.	Enzyme kinetics: Enzyme and its Classification, Mechanisms of enzyme action– concept of active site and energetic of enzyme substrate complex formation, Kinetics of single substrate reactions, Estimation of Michelis-Menten parameters, Inhibiter–types of inhibition mechanism, competitive, Uncompetitive and Non-competitive mechanism, Enzyme Immobilisation – types and covalent bonding, Effect of pH and temperature on enzyme activity, Enzyme	10	21

	deactivation: mechanisms and manifestations of protein denaturation, Deactivation models and kinetics, Enzyme used in current and developing industry.									
	Section II									
Module	Content	Hours	Weightage in %							
1.	Introduction to Bioreactors Basic principle of Bioreactor, Design and Operation of Biochemical reactors - Air-lift loop reactors, Fluidized bed- Biochemical reactors, Regime analysis of Biochemical reactors processes, Correlations for oxygen transfer; Scale-up criteria for bioreactors based on oxygen transfer and power consumption, Measurement of physical and chemical parameters in bioreactors, Separation, isolation and purification of Biomolecule.	11	22							
2.	Design of Fermenter Introduction, Basic functions, Body construction, Aeration and Agitation, Maintenance and parameter control, Valves and Steam traps, Type of industrial fermenters.	05	14							
3.	Industrial Biotech products & Case Studies : Production of industrial alcohols, Single cell proteins, Vitamins, alkaloids, Lactic acid, Activated sludge process, Basics to denitrification, biodegradation, bioleaching.	05	14							

Title	Author/s	Publication
Biochemical Engineering	J. E. Bailey and D. F. Ollis	McGraw Hill, New York, 1986.
Fundamentals		
Biotechnology	M. D. Trevan, S. Boffly, K.H.	Tata McGraw Publishing Company,
	Golding and P. Stanbury	New Delhi 1987
Biochemical Engineering	H. W. Blanch and D. S. Clark	Marcel Dekker, Inc., New York, 1996.

Reference Book(s):

Title	Author/s	Publication
Biochemical Reaction	R.Lovitt and M.Jones Edited	
Engineering in Chemical	by J. F. Richardson and	Pergamon, London, 1994.
Engineering, Vol. III, 3rd Edn.	Peacock	
Each Microbiology 4th Edition	William Frazier , Dennis	Mcgraw Hill Education, 2008.
Food Microbiology, 4th Edition	Westhoff	Megraw Hill Education, 2008.
Food Biotechnology, Volume 7	Roger Angold , Gordon A.	Cambridge University Press, 1989.
Food Diotechnology, volume /	Beech, John Taggart	Callibridge Oniversity Fless, 1909.
An Introduction to Tropical	H.G.Muller	C L P Edition, Cambridge, University
Food Science	11.0.1401101	Press, 1989.

Web Material Link(s): http://nptel.ac.in/courses/103105054/

Course Evaluation:

Theory:

- Continuous Evaluation consists of two tests of 30 marks and 1 hour of duration and average of the same will be converted to 30 marks.
- Faculty evaluation consists of 10 marks as per the guidelines provided by Course Coordinator.
- End Semester Examination consists of 60 marks.

Course Outcome(s):

- analyse the kinetics of cell growth and product formation in area of bio chemical.
- understand models of bioprocesses and design downstream processes involved in product recovery.
- identify instruments and model control systems involved in bio Chemical Engineering.
- identify and familiarize with advanced technologies in bio Chemical and its processes.

Centre for Skill Enhancement & Professional Development

Course Code: SEPD2020 Course Name: Values and Ethics Prerequisite Course: --

Teaching & Examination Scheme:

Teac	Teaching Scheme (Hours/Week)				Exa	minatio	on Schei	ne (Ma	rks)	
Theory	Practical	Tutorial	Credit	The	eory	Prac	ctical	Tut	orial	Total
Theory	Flactical	Tutoriai	creuit	CE	ESE	CE	ESE	CE	ESE	TOLAI
02	00	00	02	40	60					100

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learners to

- develop a familiarity with the mechanics of values and ethics.
- understand basic concepts of values and ethics
- explore and understand values, ethics in context of professional, social and persona spectrum
- explore an understand values, ethics in context of globalization and global issues
- explore an application of values and ethics in personal, social, academic, global and professional life.
- understand harmony at all the levels of human living and live accordingly.

	Section I		
Module	Content	Hours	Weightage in %
	Introduction to Values		
1	Definition and Concept	0.2	10
1.	• Types of Values	03	10
	Values and its Application		
	Elements and Principles of Values		
2.	Universal & Personal Values	06	20
۷.	Social, Civic & Democratic Values	00	
	Adaptation Models & Methods of Values		
	Values and Contemporary Society		
3.	Levels of Value Crisis	06	20
5.	Value Crisis Management	00	20
	Values in Indian Scriptures		
	Section II		
Module	Content	Hours	Weightage in %
	Ethics and Ethical Values		
	Definition and Concept		
1.	Acceptance and Application of Ethics	07	25
	Ethical Issues and Dilemma		
	Universal Code of Ethics: Consequences of Violation		

	Applied Ethics		
	Professional Ethics		
2.	Organizational Ethics	08	25
	Ethical Leadership		
	Ethics in Indian Scriptures		

Title	Author/s	Publication
Values and Ethics in Business and	By Samita Manna, Suparna	PHI Learning Pvt. Ltd.,
Profession	Chakraborti	New Delhi, 2010

Reference Book(s):

Title	Author/s	Publication					
Just a Job?: Communication, Ethics,	George Cheney	Oxford University Press,					
and Professional life		2010					
Professional Ethics and Human	M. Govindarajan, S.	PHI Learning Pvt. Ltd,					
Values	Natarajan, V. S.	2013					
	Senthilkumar						
Creating Values In Life: Personal,	By Ashok Gulla	Author House,					
Moral, Spiritual, Family and Social		Bloomington, 2010					
Values							
E-Book(s)							
• Ethics for Everyone Arthur Dor	hin 2009						

- Ethics for Everyone, Arthur Dorbin, 2009. (http://arthurdobrin.files.wordpress.com/2008/08/ethics-for-everyone.pdf)
- Values and Ethics for 21st Century, BBVA. (<u>https://www.bbvaopenmind.com/wp-content/uploads/2013/10/Values-and-Ethics-for-the-21st-Century_BBVA.pdf</u>)

Course Evaluation:

Theory:

- Continuous Evaluation consists of two tests of 30 marks and 1 hour of duration and average of the same will be converted to 30 marks.
- Faculty evaluation consists of 10 marks as per the guidelines provided by Course Coordinator.
- End Semester Examination consists of 60 marks.

Course Outcome(s):

- understand and relate the concepts and mechanics of values and ethics in their life.
- correlate the significance of value and ethical inputs in and get motivated to apply them in their life and profession.
- realize the significance of value and ethical inputs in and get motivated to apply them in social, global and civic issues.
- learn to apply such principles with reference to Indian scriptures.

Center for Skill Enhancement and Professional Development

Course Code: SEPD3030 Course Name: Foreign Language (German) Prerequisite Course: --

Teaching & Examination Scheme:

Teac	hing Scheme	e (Hours/W	eek)	Examination Scheme (Mark			rks)			
Theory	Practical	Tutorial	Credit	The	eory	Prac	ctical	Tute	orial	Total
Theory	Flattical	Tutoriai	creuit	CE	ESE	CE	ESE	CE	ESE	TOLAT
02	-	-	02	40	60	-	-	-	-	100

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learners to

- develop and integrate the use of the four language skills i.e. listening, speaking, reading and writing.
- use the language effectively and appropriately on topics of everyday life situations.
- develop an interest in the appreciation of German.
- develop an intercultural awareness.
- enhance the ability of the candidates to express their ideas and feelings in their own words and for them to understand the use of correct language.
- appreciate the language as an effective means of communication.
- understand language when spoken at normal conversational speed in everyday life situations.
- understand the basic structural patterns of the language, vocabulary and constructions.

	Section I		
Module	Content	Hours	Weightage in %
1.	 Introduction to German Alphabets, German accents German Numbers What are the similarities and differences between English and German? Greetings 	2	15
2.	German Time Basic Introduction	2	08
3.	Vocabulary part-1 • The days of the week • The months of the year • Seasons • Directions • Weather	2	05
4.	Vocabulary part-2 Family Colors and Shapes 	2	07

	Day/time indicators		
	 Body parts 		
	Clothing		
	Vocabulary Part-3		
5.	• Food and Meals	2	05
5.	• Fruits, Vegetables and Meats	2	05
	Sports and Hobbies		
6.	Transportation	2	05
0.	House and Furniture	2	05
	School Subject		
7.	Places	2	05
	Common Expressions		
I	Section II	1	
Module	Content	Hours	Weightage in %
	German grammar		
	• Verb Sein (to be)		
1	• Verb Haben (to have)	2	10
1.	• Introduction of Regular verbs and Irregular verb	2	10
	Konjugation of Regular verb		
	• First group verbs('EN' group)		
	Konjugation of Regular verbs		
	 Second group verbs('Ten/Den' group) 		
2.	Konjugation of Irregular verbs	2	10
	• Third group verbs (Stem change verb)		
	• Fourth group verbs (Spell Change Verb)		
	Nicht trennbare und trennbare Verben		
3.	Die Modalverben	2	10
	Personalpronomen-Nominativ		
	W-Frage		
4.	• Ja/Nein-Fragen	2	10
4.	Nomen und Artikel-Nominativ	2	10
	Die Anrede		
	Nomen-Genusregein		
5.	• Adjektiv	2	10
э.	Nomen und Artikel-Akkusativ	<u>ک</u>	10
	Personalpronomen-Akkusativ		
6	Practice of Writing	2	
6.	Practice of Speaking	2	-
-		2	_
7.	 Practice of Listening 	2	-

Title	Author/s	Publication
Namaste German	Yoshita Dalal	Yoshita Dalal

Reference Book(s):

Title	Author/s	Publication
Fit In Deutsch	Hueber	Goyal Publication

Web Material Link(s):

- https://www.youtube.com/watch?v=iGovllrEsF8&list=PLRps6yTcWQbpoqI0CmqMel1HLnLIRmOt
- <u>https://www.youtube.com/watch?v=GwBfUzPCiaw&list=PL5QyCnFPRx0GxaFjdAVkx7K9TfEklY4sg</u>

Course Evaluation:

Theory:

- Continuous Evaluation consists of a test of 30 marks and 1 Hour of duration.
- Faculty evaluation consists of 10 marks as per the guidelines provided by Course Coordinator.
- End Semester Examination consists of 60 marks.

Course Outcome(s):

- demonstrate speaking, reading, writing and listening in German.
- understand German Technology.
- communicate easily in four Language and they can get good job in German Company.
- demonstrate the level of proficiency necessary to enable them to function in an environment where German is used exclusively.